Copied to
clipboard

G = C243D10order 320 = 26·5

2nd semidirect product of C24 and D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C243D10, C10.252+ 1+4, (C2×D4)⋊5D10, C22≀C22D5, C22⋊C45D10, (C22×D5)⋊6D4, C23⋊D103C2, C202D412C2, D10.14(C2×D4), (D4×C10)⋊6C22, C242D56C2, C52(C233D4), D10⋊D412C2, C22.40(D4×D5), (C2×D20)⋊18C22, (C2×C20).27C23, C4⋊Dic525C22, (C23×C10)⋊9C22, C10.55(C22×D4), (C23×D5)⋊6C22, (C2×C10).133C24, C22.D209C2, C10.D48C22, (C22×C10).8C23, D10.12D412C2, C2.27(D46D10), C23.D514C22, D10⋊C410C22, C23.18D104C2, (C2×Dic5).60C23, C23.107(C22×D5), C22.154(C23×D5), (C22×Dic5)⋊12C22, (C22×D5).192C23, (C2×D4×D5)⋊6C2, C2.28(C2×D4×D5), (C2×C4×D5)⋊6C22, (D5×C22⋊C4)⋊2C2, (C5×C22≀C2)⋊4C2, (C2×C10).53(C2×D4), (C22×C5⋊D4)⋊7C2, (C2×C5⋊D4)⋊38C22, (C5×C22⋊C4)⋊4C22, (C2×C4).27(C22×D5), SmallGroup(320,1261)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C243D10
C1C5C10C2×C10C22×D5C23×D5C2×D4×D5 — C243D10
C5C2×C10 — C243D10
C1C22C22≀C2

Generators and relations for C243D10
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e10=f2=1, ab=ba, eae-1=faf=ac=ca, ad=da, bc=cb, ebe-1=bd=db, fbf=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >

Subgroups: 1502 in 346 conjugacy classes, 103 normal (39 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, C23, C23, C23, D5, C10, C10, C10, C22⋊C4, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×D4, C24, C24, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, C2×C22⋊C4, C22≀C2, C22≀C2, C4⋊D4, C22.D4, C22×D4, C4×D5, D20, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C22×D5, C22×D5, C22×D5, C22×C10, C22×C10, C22×C10, C233D4, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C23.D5, C5×C22⋊C4, C5×C22⋊C4, C2×C4×D5, C2×C4×D5, C2×D20, D4×D5, C22×Dic5, C2×C5⋊D4, C2×C5⋊D4, C2×C5⋊D4, D4×C10, D4×C10, C23×D5, C23×C10, D5×C22⋊C4, D10.12D4, D10⋊D4, C22.D20, C23.18D10, C23⋊D10, C202D4, C242D5, C5×C22≀C2, C2×D4×D5, C22×C5⋊D4, C243D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22×D4, 2+ 1+4, C22×D5, C233D4, D4×D5, C23×D5, C2×D4×D5, D46D10, C243D10

Smallest permutation representation of C243D10
On 80 points
Generators in S80
(1 63)(2 31)(3 65)(4 33)(5 67)(6 35)(7 69)(8 37)(9 61)(10 39)(11 75)(12 49)(13 77)(14 41)(15 79)(16 43)(17 71)(18 45)(19 73)(20 47)(21 64)(22 32)(23 66)(24 34)(25 68)(26 36)(27 70)(28 38)(29 62)(30 40)(42 51)(44 53)(46 55)(48 57)(50 59)(52 80)(54 72)(56 74)(58 76)(60 78)
(1 19)(2 74)(3 11)(4 76)(5 13)(6 78)(7 15)(8 80)(9 17)(10 72)(12 66)(14 68)(16 70)(18 62)(20 64)(21 47)(22 57)(23 49)(24 59)(25 41)(26 51)(27 43)(28 53)(29 45)(30 55)(31 56)(32 48)(33 58)(34 50)(35 60)(36 42)(37 52)(38 44)(39 54)(40 46)(61 71)(63 73)(65 75)(67 77)(69 79)
(1 30)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 57)(12 58)(13 59)(14 60)(15 51)(16 52)(17 53)(18 54)(19 55)(20 56)(31 64)(32 65)(33 66)(34 67)(35 68)(36 69)(37 70)(38 61)(39 62)(40 63)(41 78)(42 79)(43 80)(44 71)(45 72)(46 73)(47 74)(48 75)(49 76)(50 77)
(1 63)(2 64)(3 65)(4 66)(5 67)(6 68)(7 69)(8 70)(9 61)(10 62)(11 75)(12 76)(13 77)(14 78)(15 79)(16 80)(17 71)(18 72)(19 73)(20 74)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 60)(42 51)(43 52)(44 53)(45 54)(46 55)(47 56)(48 57)(49 58)(50 59)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 10)(2 9)(3 8)(4 7)(5 6)(11 52)(12 51)(13 60)(14 59)(15 58)(16 57)(17 56)(18 55)(19 54)(20 53)(21 28)(22 27)(23 26)(24 25)(29 30)(31 38)(32 37)(33 36)(34 35)(39 40)(41 77)(42 76)(43 75)(44 74)(45 73)(46 72)(47 71)(48 80)(49 79)(50 78)(61 64)(62 63)(65 70)(66 69)(67 68)

G:=sub<Sym(80)| (1,63)(2,31)(3,65)(4,33)(5,67)(6,35)(7,69)(8,37)(9,61)(10,39)(11,75)(12,49)(13,77)(14,41)(15,79)(16,43)(17,71)(18,45)(19,73)(20,47)(21,64)(22,32)(23,66)(24,34)(25,68)(26,36)(27,70)(28,38)(29,62)(30,40)(42,51)(44,53)(46,55)(48,57)(50,59)(52,80)(54,72)(56,74)(58,76)(60,78), (1,19)(2,74)(3,11)(4,76)(5,13)(6,78)(7,15)(8,80)(9,17)(10,72)(12,66)(14,68)(16,70)(18,62)(20,64)(21,47)(22,57)(23,49)(24,59)(25,41)(26,51)(27,43)(28,53)(29,45)(30,55)(31,56)(32,48)(33,58)(34,50)(35,60)(36,42)(37,52)(38,44)(39,54)(40,46)(61,71)(63,73)(65,75)(67,77)(69,79), (1,30)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,57)(12,58)(13,59)(14,60)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)(37,70)(38,61)(39,62)(40,63)(41,78)(42,79)(43,80)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,61)(10,62)(11,75)(12,76)(13,77)(14,78)(15,79)(16,80)(17,71)(18,72)(19,73)(20,74)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,60)(42,51)(43,52)(44,53)(45,54)(46,55)(47,56)(48,57)(49,58)(50,59), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,10)(2,9)(3,8)(4,7)(5,6)(11,52)(12,51)(13,60)(14,59)(15,58)(16,57)(17,56)(18,55)(19,54)(20,53)(21,28)(22,27)(23,26)(24,25)(29,30)(31,38)(32,37)(33,36)(34,35)(39,40)(41,77)(42,76)(43,75)(44,74)(45,73)(46,72)(47,71)(48,80)(49,79)(50,78)(61,64)(62,63)(65,70)(66,69)(67,68)>;

G:=Group( (1,63)(2,31)(3,65)(4,33)(5,67)(6,35)(7,69)(8,37)(9,61)(10,39)(11,75)(12,49)(13,77)(14,41)(15,79)(16,43)(17,71)(18,45)(19,73)(20,47)(21,64)(22,32)(23,66)(24,34)(25,68)(26,36)(27,70)(28,38)(29,62)(30,40)(42,51)(44,53)(46,55)(48,57)(50,59)(52,80)(54,72)(56,74)(58,76)(60,78), (1,19)(2,74)(3,11)(4,76)(5,13)(6,78)(7,15)(8,80)(9,17)(10,72)(12,66)(14,68)(16,70)(18,62)(20,64)(21,47)(22,57)(23,49)(24,59)(25,41)(26,51)(27,43)(28,53)(29,45)(30,55)(31,56)(32,48)(33,58)(34,50)(35,60)(36,42)(37,52)(38,44)(39,54)(40,46)(61,71)(63,73)(65,75)(67,77)(69,79), (1,30)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,57)(12,58)(13,59)(14,60)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)(37,70)(38,61)(39,62)(40,63)(41,78)(42,79)(43,80)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,61)(10,62)(11,75)(12,76)(13,77)(14,78)(15,79)(16,80)(17,71)(18,72)(19,73)(20,74)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,60)(42,51)(43,52)(44,53)(45,54)(46,55)(47,56)(48,57)(49,58)(50,59), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,10)(2,9)(3,8)(4,7)(5,6)(11,52)(12,51)(13,60)(14,59)(15,58)(16,57)(17,56)(18,55)(19,54)(20,53)(21,28)(22,27)(23,26)(24,25)(29,30)(31,38)(32,37)(33,36)(34,35)(39,40)(41,77)(42,76)(43,75)(44,74)(45,73)(46,72)(47,71)(48,80)(49,79)(50,78)(61,64)(62,63)(65,70)(66,69)(67,68) );

G=PermutationGroup([[(1,63),(2,31),(3,65),(4,33),(5,67),(6,35),(7,69),(8,37),(9,61),(10,39),(11,75),(12,49),(13,77),(14,41),(15,79),(16,43),(17,71),(18,45),(19,73),(20,47),(21,64),(22,32),(23,66),(24,34),(25,68),(26,36),(27,70),(28,38),(29,62),(30,40),(42,51),(44,53),(46,55),(48,57),(50,59),(52,80),(54,72),(56,74),(58,76),(60,78)], [(1,19),(2,74),(3,11),(4,76),(5,13),(6,78),(7,15),(8,80),(9,17),(10,72),(12,66),(14,68),(16,70),(18,62),(20,64),(21,47),(22,57),(23,49),(24,59),(25,41),(26,51),(27,43),(28,53),(29,45),(30,55),(31,56),(32,48),(33,58),(34,50),(35,60),(36,42),(37,52),(38,44),(39,54),(40,46),(61,71),(63,73),(65,75),(67,77),(69,79)], [(1,30),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,57),(12,58),(13,59),(14,60),(15,51),(16,52),(17,53),(18,54),(19,55),(20,56),(31,64),(32,65),(33,66),(34,67),(35,68),(36,69),(37,70),(38,61),(39,62),(40,63),(41,78),(42,79),(43,80),(44,71),(45,72),(46,73),(47,74),(48,75),(49,76),(50,77)], [(1,63),(2,64),(3,65),(4,66),(5,67),(6,68),(7,69),(8,70),(9,61),(10,62),(11,75),(12,76),(13,77),(14,78),(15,79),(16,80),(17,71),(18,72),(19,73),(20,74),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,60),(42,51),(43,52),(44,53),(45,54),(46,55),(47,56),(48,57),(49,58),(50,59)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,10),(2,9),(3,8),(4,7),(5,6),(11,52),(12,51),(13,60),(14,59),(15,58),(16,57),(17,56),(18,55),(19,54),(20,53),(21,28),(22,27),(23,26),(24,25),(29,30),(31,38),(32,37),(33,36),(34,35),(39,40),(41,77),(42,76),(43,75),(44,74),(45,73),(46,72),(47,71),(48,80),(49,79),(50,78),(61,64),(62,63),(65,70),(66,69),(67,68)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K2L2M4A4B4C4D···4H5A5B10A···10F10G···10R10S10T20A···20F
order122222222222224444···45510···1010···10101020···20
size111122444101010102044420···20222···24···4888···8

50 irreducible representations

dim11111111111122222444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D5D10D10D102+ 1+4D4×D5D46D10
kernelC243D10D5×C22⋊C4D10.12D4D10⋊D4C22.D20C23.18D10C23⋊D10C202D4C242D5C5×C22≀C2C2×D4×D5C22×C5⋊D4C22×D5C22≀C2C22⋊C4C2×D4C24C10C22C2
# reps11221122111142662248

Matrix representation of C243D10 in GL8(𝔽41)

400000000
040000000
004000000
000400000
000040000
000004000
00000010
00000001
,
00100000
00010000
10000000
01000000
0000233500
000061800
000000186
0000003523
,
10000000
01000000
00100000
00010000
000040000
000004000
000000400
000000040
,
400000000
040000000
004000000
000400000
000040000
000004000
000000400
000000040
,
91311250000
281316250000
301632280000
251613280000
0000004035
000000635
0000403500
000063500
,
901100000
283216300000
3003200000
25111390000
000000400
00000061
000040000
00006100

G:=sub<GL(8,GF(41))| [40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,23,6,0,0,0,0,0,0,35,18,0,0,0,0,0,0,0,0,18,35,0,0,0,0,0,0,6,23],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[9,28,30,25,0,0,0,0,13,13,16,16,0,0,0,0,11,16,32,13,0,0,0,0,25,25,28,28,0,0,0,0,0,0,0,0,0,0,40,6,0,0,0,0,0,0,35,35,0,0,0,0,40,6,0,0,0,0,0,0,35,35,0,0],[9,28,30,25,0,0,0,0,0,32,0,11,0,0,0,0,11,16,32,13,0,0,0,0,0,30,0,9,0,0,0,0,0,0,0,0,0,0,40,6,0,0,0,0,0,0,0,1,0,0,0,0,40,6,0,0,0,0,0,0,0,1,0,0] >;

C243D10 in GAP, Magma, Sage, TeX

C_2^4\rtimes_3D_{10}
% in TeX

G:=Group("C2^4:3D10");
// GroupNames label

G:=SmallGroup(320,1261);
// by ID

G=gap.SmallGroup(320,1261);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,219,675,297,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^10=f^2=1,a*b=b*a,e*a*e^-1=f*a*f=a*c=c*a,a*d=d*a,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽